Papers
Topics
Authors
Recent
Search
2000 character limit reached

Local variational principle concerning entropy of a sofic group action

Published 15 Sep 2011 in math.DS | (1109.3244v1)

Abstract: Recently Lewis Bowen introduced a notion of entropy for measure-preserving actions of countable sofic groups admitting a generating measurable partition with finite entropy; and then David Kerr and Hanfeng Li developed an operator-algebraic approach to actions of countable sofic groups not only on a standard probability space but also on a compact metric space, and established the global variational principle concerning measure-theoretic and topological entropy in this sofic context. By localizing these two kinds of entropy, in this paper we prove a local version of the global variational principle for any finite open cover of the space, and show that these local measure-theoretic and topological entropy coincide with their classical counterparts when the acting group is an infinite amenable group.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.