Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Community-Based Sampling Method Using DPL for Online Social Network (1109.1063v1)

Published 6 Sep 2011 in cs.SI and physics.soc-ph

Abstract: In this paper, we propose a new graph sampling method for online social networks that achieves the following. First, a sample graph should reflect the ratio between the number of nodes and the number of edges of the original graph. Second, a sample graph should reflect the topology of the original graph. Third, sample graphs should be consistent with each other when they are sampled from the same original graph. The proposed method employs two techniques: hierarchical community extraction and densification power law. The proposed method partitions the original graph into a set of communities to preserve the topology of the original graph. It also uses the densification power law which captures the ratio between the number of nodes and the number of edges in online social networks. In experiments, we use several real-world online social networks, create sample graphs using the existing methods and ours, and analyze the differences between the sample graph by each sampling method and the original graph.

Citations (25)

Summary

We haven't generated a summary for this paper yet.