Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Randomized Algorithms for Tracking Distributed Count, Frequencies, and Ranks (1108.3413v2)

Published 17 Aug 2011 in cs.DS

Abstract: We show that randomization can lead to significant improvements for a few fundamental problems in distributed tracking. Our basis is the {\em count-tracking} problem, where there are $k$ players, each holding a counter $n_i$ that gets incremented over time, and the goal is to track an $\eps$-approximation of their sum $n=\sum_i n_i$ continuously at all times, using minimum communication. While the deterministic communication complexity of the problem is $\Theta(k/\eps \cdot \log N)$, where $N$ is the final value of $n$ when the tracking finishes, we show that with randomization, the communication cost can be reduced to $\Theta(\sqrt{k}/\eps \cdot \log N)$. Our algorithm is simple and uses only O(1) space at each player, while the lower bound holds even assuming each player has infinite computing power. Then, we extend our techniques to two related distributed tracking problems: {\em frequency-tracking} and {\em rank-tracking}, and obtain similar improvements over previous deterministic algorithms. Both problems are of central importance in large data monitoring and analysis, and have been extensively studied in the literature.

Citations (42)

Summary

We haven't generated a summary for this paper yet.