Papers
Topics
Authors
Recent
Search
2000 character limit reached

Motivic Donaldson-Thomas invariants and McKay correspondence

Published 29 Jul 2011 in math.AG, hep-th, and math.RT | (1107.6044v1)

Abstract: Let $G\subset SL_2(C)\subset SL_3(C)$ be a finite group. We compute motivic Pandharipande-Thomas and Donaldson-Thomas invariants of the crepant resolution $HilbG(C3)$ of $C3/G$ generalizing results of Gholampour and Jiang who computed numerical DT/PT invariants using localization techniques. Our formulas rely on the computation of motivic Donaldson-Thomas invariants for a special class of quivers with potentials. We show that these motivic Donaldson-Thomas invariants are closely related to the polynomials counting absolutely indecomposable quiver representations over finite fields introduced by Kac. We formulate a conjecture on the positivity of Donaldson-Thomas invariants for a broad class of quivers with potentials. This conjecture, if true, implies the Kac positivity conjecture for arbitrary quivers.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.