Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Polynomial degree bounds for matrix semi-invariants (1512.03393v1)

Published 10 Dec 2015 in math.RT and cs.CC

Abstract: We study the left-right action of $\operatorname{SL}_n \times \operatorname{SL}_n$ on $m$-tuples of $n \times n$ matrices with entries in an infinite field $K$. We show that invariants of degree $n2- n$ define the null cone. Consequently, invariants of degree $\leq n6$ generate the ring of invariants if $\operatorname{char}(K)=0$. We also prove that for $m \gg 0$, invariants of degree at least $n\lfloor \sqrt{n+1}\rfloor$ are required to define the null cone. We generalize our results to matrix invariants of $m$-tuples of $p\times q$ matrices, and to rings of semi-invariants for quivers. For the proofs, we use new techniques such as the regularity lemma by Ivanyos, Qiao and Subrahmanyam, and the concavity property of the tensor blow-ups of matrix spaces. We will discuss several applications to algebraic complexity theory, such as a deterministic polynomial time algorithm for non-commutative rational identity testing, and the existence of small division-free formulas for non-commutative polynomials.

Citations (97)

Summary

We haven't generated a summary for this paper yet.