Papers
Topics
Authors
Recent
Search
2000 character limit reached

Global and trajectory attractors for a nonlocal Cahn-Hilliard-Navier-Stokes system

Published 29 Jul 2011 in math.AP | (1107.5933v1)

Abstract: The Cahn-Hilliard-Navier-Stokes system is based on a well-known diffuse interface model and describes the evolution of an incompressible isothermal mixture of binary fluids. A nonlocal variant consists of the Navier-Stokes equations suitably coupled with a nonlocal Cahn-Hilliard equation. The authors, jointly with P. Colli, have already proven the existence of a global weak solution to a nonlocal Cahn-Hilliard-Navier-Stokes system subject to no-slip and no-flux boundary conditions. Uniqueness is still an open issue even in dimension two. However, in this case, the energy identity holds. This property is exploited here to define, following J.M. Ball's approach, a generalized semiflow which has a global attractor. Through a similar argument, we can also show the existence of a (connected) global attractor for the convective nonlocal Cahn-Hilliard equation with a given velocity field, even in dimension three. Finally, we demonstrate that any weak solution fulfilling the energy inequality also satisfies an energy inequality. This allows us to establish the existence of the trajectory attractor also in dimension three with a time dependent external force.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.