Papers
Topics
Authors
Recent
Search
2000 character limit reached

Structural Analysis of Laplacian Spectral Properties of Large-Scale Networks

Published 28 Jul 2011 in math.OC, cs.CE, cs.DM, cs.SI, cs.SY, physics.data-an, and physics.soc-ph | (1107.5676v3)

Abstract: Using methods from algebraic graph theory and convex optimization, we study the relationship between local structural features of a network and spectral properties of its Laplacian matrix. In particular, we derive expressions for the so-called spectral moments of the Laplacian matrix of a network in terms of a collection of local structural measurements. Furthermore, we propose a series of semidefinite programs to compute bounds on the spectral radius and the spectral gap of the Laplacian matrix from a truncated sequence of Laplacian spectral moments. Our analysis shows that the Laplacian spectral moments and spectral radius are strongly constrained by local structural features of the network. On the other hand, we illustrate how local structural features are usually not enough to estimate the Laplacian spectral gap.

Citations (30)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.