The Divergence of Reinforcement Learning Algorithms with Value-Iteration and Function Approximation (1107.4606v2)
Abstract: This paper gives specific divergence examples of value-iteration for several major Reinforcement Learning and Adaptive Dynamic Programming algorithms, when using a function approximator for the value function. These divergence examples differ from previous divergence examples in the literature, in that they are applicable for a greedy policy, i.e. in a "value iteration" scenario. Perhaps surprisingly, with a greedy policy, it is also possible to get divergence for the algorithms TD(1) and Sarsa(1). In addition to these divergences, we also achieve divergence for the Adaptive Dynamic Programming algorithms HDP, DHP and GDHP.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.