Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Entropic Regularization of Markov Decision Processes (1907.04214v2)

Published 6 Jul 2019 in cs.LG and stat.ML

Abstract: An optimal feedback controller for a given Markov decision process (MDP) can in principle be synthesized by value or policy iteration. However, if the system dynamics and the reward function are unknown, a learning agent must discover an optimal controller via direct interaction with the environment. Such interactive data gathering commonly leads to divergence towards dangerous or uninformative regions of the state space unless additional regularization measures are taken. Prior works proposed bounding the information loss measured by the Kullback-Leibler (KL) divergence at every policy improvement step to eliminate instability in the learning dynamics. In this paper, we consider a broader family of $f$-divergences, and more concretely $\alpha$-divergences, which inherit the beneficial property of providing the policy improvement step in closed form at the same time yielding a corresponding dual objective for policy evaluation. Such entropic proximal policy optimization view gives a unified perspective on compatible actor-critic architectures. In particular, common least-squares value function estimation coupled with advantage-weighted maximum likelihood policy improvement is shown to correspond to the Pearson $\chi2$-divergence penalty. Other actor-critic pairs arise for various choices of the penalty-generating function $f$. On a concrete instantiation of our framework with the $\alpha$-divergence, we carry out asymptotic analysis of the solutions for different values of $\alpha$ and demonstrate the effects of the divergence function choice on common standard reinforcement learning problems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Boris Belousov (29 papers)
  2. Jan Peters (252 papers)
Citations (22)