Optimal Adaptive Learning in Uncontrolled Restless Bandit Problems
Abstract: In this paper we consider the problem of learning the optimal policy for uncontrolled restless bandit problems. In an uncontrolled restless bandit problem, there is a finite set of arms, each of which when pulled yields a positive reward. There is a player who sequentially selects one of the arms at each time step. The goal of the player is to maximize its undiscounted reward over a time horizon T. The reward process of each arm is a finite state Markov chain, whose transition probabilities are unknown by the player. State transitions of each arm is independent of the selection of the player. We propose a learning algorithm with logarithmic regret uniformly over time with respect to the optimal finite horizon policy. Our results extend the optimal adaptive learning of MDPs to POMDPs.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.