Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Anomaly Detection Systems Using Incremental Commute Time (1107.3894v2)

Published 20 Jul 2011 in cs.AI

Abstract: Commute Time Distance (CTD) is a random walk based metric on graphs. CTD has found widespread applications in many domains including personalized search, collaborative filtering and making search engines robust against manipulation. Our interest is inspired by the use of CTD as a metric for anomaly detection. It has been shown that CTD can be used to simultaneously identify both global and local anomalies. Here we propose an accurate and efficient approximation for computing the CTD in an incremental fashion in order to facilitate real-time applications. An online anomaly detection algorithm is designed where the CTD of each new arriving data point to any point in the current graph can be estimated in constant time ensuring a real-time response. Moreover, the proposed approach can also be applied in many other applications that utilize commute time distance.

Citations (4)

Summary

We haven't generated a summary for this paper yet.