Papers
Topics
Authors
Recent
Search
2000 character limit reached

Online Anomaly Detection Systems Using Incremental Commute Time

Published 20 Jul 2011 in cs.AI | (1107.3894v2)

Abstract: Commute Time Distance (CTD) is a random walk based metric on graphs. CTD has found widespread applications in many domains including personalized search, collaborative filtering and making search engines robust against manipulation. Our interest is inspired by the use of CTD as a metric for anomaly detection. It has been shown that CTD can be used to simultaneously identify both global and local anomalies. Here we propose an accurate and efficient approximation for computing the CTD in an incremental fashion in order to facilitate real-time applications. An online anomaly detection algorithm is designed where the CTD of each new arriving data point to any point in the current graph can be estimated in constant time ensuring a real-time response. Moreover, the proposed approach can also be applied in many other applications that utilize commute time distance.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.