Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Some Aspects of Modeling Dependence in Copula-based Markov chains (1107.1794v2)

Published 9 Jul 2011 in math.PR

Abstract: Dependence coefficients have been widely studied for Markov processes defined by a set of transition probabilities and an initial distribution. This work clarifies some aspects of the theory of dependence structure of Markov chains generated by copulas that are useful in time series econometrics and other applied fields. The main aim of this paper is to clarify the relationship between the notions of geometric ergodicity and geometric {\rho}-mixing; namely, to point out that for a large number of well known copulas, such as Clayton, Gumbel or Student, these notions are equivalent. Some of the results published in the last years appear to be redundant if one takes into account this fact. We apply this equivalence to show that any mixture of Clayton, Gumbel or Student copulas generate both geometrically ergodic and geometric {\rho}-mixing stationary Markov chains, answering in this way an open question in the literature. We shall also point out that a sufficient condition for {\rho}-mixing, used in the literature, actually implies Doeblin recurrence.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube