Image denoising assessment using anisotropic stack filtering (1106.5928v1)
Abstract: In this paper we propose a measure of anisotropy as a quality parameter to estimate the amount of noise in noisy images. The anisotropy of an image can be determined through a directional measure, using an appropriate statistical distribution of the information contained in the image. This new measure is achieved through a stack filtering paradigm. First, we define a local directional entropy, based on the distribution of 0's and 1's in the neigborhood of every pixel location of each stack level. Then the entropy variation of this directional entropy is used to define an anisotropic measure. The empirical results have shown that this measure can be regarded as an excellent image noise indicator, which is particularly relevant for quality assessment of denoising algorithms. The method has been evaluated with artificial and real-world degraded images.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.