Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Image Denoising via Collaborative Dual-Domain Patch Filtering (1805.00472v1)

Published 1 May 2018 in cs.CV

Abstract: In this paper, we propose a novel image denoising algorithm exploiting features from both spatial as well as transformed domain. We implement intensity-invariance based improved grouping for collaborative support-agnostic sparse reconstruction. For collaboration firstly, we stack similar-structured patches via intensity-invariant correlation measure. The grouped patches collaborate to yield desirable sparse estimates for noise filtering. This is because similar patches share the same support in the transformed domain, such similar supports can be used as probabilities of active taps to refine the sparse estimates. This ultimately produces a very useful patch estimate thus increasing the quality of recovered image by discarding the noise-causing components. A region growing based spatially developed post-processor is then applied to further enhance the smooth regions by extracting the spatial domain features. We also extend our proposed method for denoising of color images. Comparison results with the state-of-the-art algorithms in terms of peak signal-to-noise ratio (PNSR) and structural similarity (SSIM) index from extensive experimentations via a broad range of scenarios demonstrate the superiority of our proposed algorithm.

Citations (2)

Summary

We haven't generated a summary for this paper yet.