Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Personalised Travel Recommendation based on Location Co-occurrence (1106.5213v1)

Published 26 Jun 2011 in cs.IR

Abstract: We propose a new task of recommending touristic locations based on a user's visiting history in a geographically remote region. This can be used to plan a touristic visit to a new city or country, or by travel agencies to provide personalised travel deals. A set of geotags is used to compute a location similarity model between two different regions. The similarity between two landmarks is derived from the number of users that have visited both places, using a Gaussian density estimation of the co-occurrence space of location visits to cluster related geotags. The standard deviation of the kernel can be used as a scale parameter that determines the size of the recommended landmarks. A personalised recommendation based on the location similarity model is evaluated on city and country scale and is able to outperform a location ranking based on popularity. Especially when a tourist filter based on visit duration is enforced, the prediction can be accurately adapted to the preference of the user. An extensive evaluation based on manual annotations shows that more strict ranking methods like cosine similarity and a proposed RankDiff algorithm provide more serendipitous recommendations and are able to link similar locations on opposite sides of the world.

Citations (47)

Summary

We haven't generated a summary for this paper yet.