Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decoding finger movements from ECoG signals using switching linear models (1106.3395v1)

Published 17 Jun 2011 in cs.LG

Abstract: One of the major challenges of ECoG-based Brain-Machine Interfaces is the movement prediction of a human subject. Several methods exist to predict an arm 2-D trajectory. The fourth BCI Competition gives a dataset in which the aim is to predict individual finger movements (5-D trajectory). The difficulty lies in the fact that there is no simple relation between ECoG signals and finger movement. We propose in this paper to decode finger flexions using switching models. This method permits to simplify the system as it is now described as an ensemble of linear models depending on an internal state. We show that an interesting accuracy prediction can be obtained by such a model.

Citations (68)

Summary

We haven't generated a summary for this paper yet.