Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-stage Convex Relaxation for Feature Selection (1106.0565v2)

Published 3 Jun 2011 in stat.ML

Abstract: A number of recent work studied the effectiveness of feature selection using Lasso. It is known that under the restricted isometry properties (RIP), Lasso does not generally lead to the exact recovery of the set of nonzero coefficients, due to the looseness of convex relaxation. This paper considers the feature selection property of nonconvex regularization, where the solution is given by a multi-stage convex relaxation scheme. Under appropriate conditions, we show that the local solution obtained by this procedure recovers the set of nonzero coefficients without suffering from the bias of Lasso relaxation, which complements parameter estimation results of this procedure.

Citations (111)

Summary

We haven't generated a summary for this paper yet.