Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 30 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The reliability of the AIC method in Cosmological Model Selection (1105.5745v2)

Published 29 May 2011 in astro-ph.CO, astro-ph.IM, and physics.data-an

Abstract: The Akaike information criterion (AIC) has been used as a statistical criterion to compare the appropriateness of different dark energy candidate models underlying a particular data set. Under suitable conditions, the AIC is an indirect estimate of the Kullback-Leibler divergence D(T//A) of a candidate model A with respect to the truth T. Thus, a dark energy model with a smaller AIC is ranked as a better model, since it has a smaller Kullback-Leibler discrepancy with T. In this paper, we explore the impact of statistical errors in estimating the AIC during model comparison. Using a parametric bootstrap technique, we study the distribution of AIC differences between a set of candidate models due to different realizations of noise in the data and show that the shape and spread of this distribution can be quite varied. We also study the rate of success of the AIC procedure for different values of a threshold parameter popularly used in the literature. For plausible choices of true dark energy models, our studies suggest that investigating such distributions of AIC differences in addition to the threshold is useful in correctly interpreting comparisons of dark energy models using the AIC technique.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube