Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scale-Invariant Local Descriptor for Event Recognition in 1D Sensor Signals (1105.5675v1)

Published 28 May 2011 in cs.MM and cs.CV

Abstract: In this paper, we introduce a shape-based, time-scale invariant feature descriptor for 1-D sensor signals. The time-scale invariance of the feature allows us to use feature from one training event to describe events of the same semantic class which may take place over varying time scales such as walking slow and walking fast. Therefore it requires less training set. The descriptor takes advantage of the invariant location detection in the scale space theory and employs a high level shape encoding scheme to capture invariant local features of events. Based on this descriptor, a scale-invariant classifier with "R" metric (SIC-R) is designed to recognize multi-scale events of human activities. The R metric combines the number of matches of keypoint in scale space with the Dynamic Time Warping score. SICR is tested on various types of 1-D sensors data from passive infrared, accelerometer and seismic sensors with more than 90% classification accuracy.

Citations (17)

Summary

We haven't generated a summary for this paper yet.