Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Large-Scale Music Annotation and Retrieval: Learning to Rank in Joint Semantic Spaces (1105.5196v1)

Published 26 May 2011 in cs.LG

Abstract: Music prediction tasks range from predicting tags given a song or clip of audio, predicting the name of the artist, or predicting related songs given a song, clip, artist name or tag. That is, we are interested in every semantic relationship between the different musical concepts in our database. In realistically sized databases, the number of songs is measured in the hundreds of thousands or more, and the number of artists in the tens of thousands or more, providing a considerable challenge to standard machine learning techniques. In this work, we propose a method that scales to such datasets which attempts to capture the semantic similarities between the database items by modeling audio, artist names, and tags in a single low-dimensional semantic space. This choice of space is learnt by optimizing the set of prediction tasks of interest jointly using multi-task learning. Our method both outperforms baseline methods and, in comparison to them, is faster and consumes less memory. We then demonstrate how our method learns an interpretable model, where the semantic space captures well the similarities of interest.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jason Weston (130 papers)
  2. Samy Bengio (75 papers)
  3. Philippe Hamel (8 papers)
Citations (21)

Summary

We haven't generated a summary for this paper yet.