Papers
Topics
Authors
Recent
2000 character limit reached

Eigenvector localization as a tool to study small communities in online social networks

Published 25 May 2011 in physics.soc-ph, cond-mat.stat-mech, and cs.SI | (1105.5053v1)

Abstract: We present and discuss a mathematical procedure for identification of small "communities" or segments within large bipartite networks. The procedure is based on spectral analysis of the matrix encoding network structure. The principal tool here is localization of eigenvectors of the matrix, by means of which the relevant network segments become visible. We exemplified our approach by analyzing the data related to product reviewing on Amazon.com. We found several segments, a kind of hybrid communities of densely interlinked reviewers and products, which we were able to meaningfully interpret in terms of the type and thematic categorization of reviewed items. The method provides a complementary approach to other ways of community detection, typically aiming at identification of large network modules.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.