Complete monotonicity of a function involving the $p$-psi function and alternative proofs
Abstract: In the paper the authors alternatively prove that the function $x\alpha\big[\ln\frac{px}{x+p+1}-\psi_p(x)\big]$ is completely monotonic on $(0,\infty)$ if and only if $\alpha \le 1$, where $p\in\mathbb{N}$ and $\psi_p(x)$ is the $p$-analogue of the classical psi function $\psi(x)$. This generalizes a known result.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.