Papers
Topics
Authors
Recent
Search
2000 character limit reached

Jacobi Crossover Ensembles of Random Matrices and Statistics of Transmission Eigenvalues

Published 22 May 2011 in cond-mat.stat-mech, cond-mat.mes-hall, and quant-ph | (1105.4353v1)

Abstract: We study the transition in conductance properties of chaotic mesoscopic cavities as time-reversal symmetry is broken. We consider the Brownian motion model for transmission eigenvalues for both types of transitions, viz., orthogonal-unitary and symplectic-unitary crossovers depending on the presence or absence of spin-rotation symmetry of the electron. In both cases the crossover is governed by a Brownian motion parameter {\tau}, which measures the extent of time-reversal symmetry breaking. It is shown that the results obtained correspond to the Jacobi crossover ensembles of random matrices. We derive the level density and the correlation functions of higher orders for the transmission eigenvalues. We also obtain the exact expressions for the average conductance, average shot-noise power and variance of conductance, as functions of {\tau}, for arbitrary number of modes (channels) in the two leads connected to the cavity. Moreover, we give the asymptotic result for the variance of shot-noise power for both the crossovers, the exact results being too long. In the {\tau} \rightarrow 0 and {\tau} \rightarrow \infty limits the known results for the orthogonal (or symplectic) and unitary ensembles are reproduced. In the weak time-reversal symmetry breaking regime our results are shown to be in agreement with the semiclassical predictions.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.