Papers
Topics
Authors
Recent
Search
2000 character limit reached

Symplectic Maps from Cluster Algebras

Published 16 May 2011 in nlin.SI, math-ph, and math.MP | (1105.2985v2)

Abstract: We consider nonlinear recurrences generated from the iteration of maps that arise from cluster algebras. More precisely, starting from a skew-symmetric integer matrix, or its corresponding quiver, one can define a set of mutation operations, as well as a set of associated cluster mutations that are applied to a set of affine coordinates (the cluster variables). Fordy and Marsh recently provided a complete classification of all such quivers that have a certain periodicity property under sequences of mutations. This periodicity implies that a suitable sequence of cluster mutations is precisely equivalent to iteration of a nonlinear recurrence relation. Here we explain briefly how to introduce a symplectic structure in this setting, which is preserved by a corresponding birational map (possibly on a space of lower dimension). We give examples of both integrable and non-integrable maps that arise from this construction. We use algebraic entropy as an approach to classifying integrable cases. The degrees of the iterates satisfy a tropical version of the map.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.