Papers
Topics
Authors
Recent
2000 character limit reached

On the General Ericksen-Leslie System: Parodi's Relation, Well-posedness and Stability

Published 11 May 2011 in math.AP | (1105.2180v6)

Abstract: In this paper we investigate the role of Parodi's relation in the well-posedness and stability of the general Ericksen-Leslie system modeling nematic liquid crystal flows. First, we give a formal physical derivation of the Ericksen-Leslie system through an appropriate energy variational approach under Parodi's relation, in which we can distinguish the conservative/dissipative parts of the induced elastic stress. Next, we prove global well-posedness and long-time behavior of the Ericksen-Leslie system under the assumption that the viscosity $\mu_4$ is sufficiently large. Finally, under Parodi's relation, we show the global well-posedness and Lyapunov stability for the Ericksen-Leslie system near local energy minimizers. The connection between Parodi's relation and linear stability of the Ericksen-Leslie system is also discussed.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.