Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Loop homology of spheres and complex projective spaces (1104.5219v4)

Published 27 Apr 2011 in math.AT, math-ph, math.GT, and math.MP

Abstract: In his Inventiones paper, Ziller (Invent. Math: 1-22, 1977) computed the integral homology as a graded abelian group of the free loop space of compact, globally symmetric spaces of rank 1. Chas and Sullivan (String Topology, 1999)showed that the homology of the free loop space of a compact closed orientable manifold can be equipped with a loop product and a BV-operator making it a Batalin-Vilkovisky algebra. Cohen, Jones and Yan (The loop homology algebra of spheres and projective spaces, 2004) developed a spectral sequence which converges to the loop homology as a spectral sequence of algebras. They computed the algebra structure of the loop homology of spheres and complex projective spaces by using Ziller's results and the method of Brown-Shih (Ann. of Math. 69:223-246, 1959, Publ. Math. Inst. Hautes \'Etudes Sci. 3: 93-176, 1962). In this note we compute the loop homology algebra by using only spectral sequences and the technique of universal examples. We therefore not only obtain Zillers' and Brown-Shihs' results in an elementary way, we also replace the roundabout computations of Cohen, Jones and Yan (The loop homology algebra of spheres and projective spaces, 2004) making them independent of Ziller's and Brown-Shihs' work. Moreover we offer an elementary technique which we expect can easily be generalized and applied to a wider family of spaces, not only the globally symmetric ones.

Summary

We haven't generated a summary for this paper yet.