A semi-abelian approach to directed homology
Abstract: We develop a homology theory for directed spaces, based on the semi-abelian category of (non-unital) associative algebras. The major ingredient is a simplicial algebra constructed from convolution algebras of certain trace categories of a directed space. We show that this directed homology HA is invariant under directed homeomorphisms, and is computable as a simple algebra quotient for $HA_1$. We also show that the algebra structure for $HA_n$, $n\geq 2$ is degenerate, through a Eckmann-Hilton argument. We hint at some relationships between this homology theory and natural homology, another homology theory designed for directed spaces. Finally we pave the way towards some interesting long exact sequences.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.