Papers
Topics
Authors
Recent
2000 character limit reached

When do generalized entropies apply? How phase space volume determines entropy (1104.2064v1)

Published 11 Apr 2011 in cond-mat.stat-mech

Abstract: We show how the dependence of phase space volume $\Omega(N)$ of a classical system on its size $N$ uniquely determines its extensive entropy. We give a concise criterion when this entropy is not of Boltzmann-Gibbs type but has to assume a {\em generalized} (non-additive) form. We show that generalized entropies can only exist when the dynamically (statistically) relevant fraction of degrees of freedom in the system vanishes in the thermodynamic limit. These are systems where the bulk of the degrees of freedom is frozen and is practically statistically inactive. Systems governed by generalized entropies are therefore systems whose phase space volume effectively collapses to a lower-dimensional 'surface'. We explicitly illustrate the situation for binomial processes and argue that generalized entropies could be relevant for self organized critical systems such as sand piles, for spin systems which form meta-structures such as vortices, domains, instantons, etc., and for problems associated with anomalous diffusion.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube