Papers
Topics
Authors
Recent
2000 character limit reached

Algebraic formulas for the coefficients of half-integral weight harmonic weak Maass forms

Published 6 Apr 2011 in math.NT and math.CO | (1104.1182v1)

Abstract: We prove that the coefficients of certain weight -1/2 harmonic Maass forms are traces of singular moduli for weak Maass forms. To prove this theorem, we construct a theta lift from spaces of weight -2 harmonic weak Maass forms to spaces of weight -1/2 vector-valued harmonic weak Maass forms on Mp_2(Z), a result which is of independent interest. We then prove a general theorem which guarantees (with bounded denominator) when such Maass singular moduli are algebraic. As an example of these results, we derive a formula for the partition function p(n) as a finite sum of algebraic numbers which lie in the usual discriminant -24n+1 ring class field. We indicate how these results extend to general weights. In particular, we illustrate how one can compute theta lifts for general weights by making use of the Kudla-Millson kernel and Maass differential operators.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.