Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Feature selection via simultaneous sparse approximation for person specific face verification (1102.2743v2)

Published 14 Feb 2011 in cs.CV

Abstract: There is an increasing use of some imperceivable and redundant local features for face recognition. While only a relatively small fraction of them is relevant to the final recognition task, the feature selection is a crucial and necessary step to select the most discriminant ones to obtain a compact face representation. In this paper, we investigate the sparsity-enforced regularization-based feature selection methods and propose a multi-task feature selection method for building person specific models for face verification. We assume that the person specific models share a common subset of features and novelly reformulated the common subset selection problem as a simultaneous sparse approximation problem. To the best of our knowledge, it is the first time to apply the sparsity-enforced regularization methods for person specific face verification. The effectiveness of the proposed methods is verified with the challenging LFW face databases.

Citations (4)

Summary

We haven't generated a summary for this paper yet.