Papers
Topics
Authors
Recent
2000 character limit reached

Entanglement in mutually unbiased bases

Published 10 Feb 2011 in quant-ph | (1102.2080v3)

Abstract: One of the essential features of quantum mechanics is that most pairs of observables cannot be measured simultaneously. This phenomenon is most strongly manifested when observables are related to mutually unbiased bases. In this paper, we shed some light on the connection between mutually unbiased bases and another essential feature of quantum mechanics, quantum entanglement. It is shown that a complete set of mutually unbiased bases of a bipartite system contains a fixed amount of entanglement, independently of the choice of the set. This has implications for entanglement distribution among the states of a complete set. In prime-squared dimensions we present an explicit experiment-friendly construction of a complete set with a particularly simple entanglement distribution. Finally, we describe basic properties of mutually unbiased bases composed only of product states. The constructions are illustrated with explicit examples in low dimensions. We believe that properties of entanglement in mutually unbiased bases might be one of the ingredients to be taken into account to settle the question of the existence of complete sets. We also expect that they will be relevant to applications of bases in the experimental realization of quantum protocols in higher-dimensional Hilbert spaces.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.