Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Graph-state formalism for mutually unbiased bases (1309.6557v2)

Published 25 Sep 2013 in quant-ph

Abstract: A pair of orthonormal bases is called mutually unbiased if all mutual overlaps between any element of one basis with an arbitrary element of the other basis coincide. In case the dimension, $d$, of the considered Hilbert space is a power of a prime number, complete sets of $d+1$ mutually unbiased bases (MUBs) exist. Here, we present a novel method based on the graph-state formalism to construct such sets of MUBs. We show that for $n$ $p$-level systems, with $p$ being prime, one particular graph suffices to easily construct a set of $pn+1$ MUBs. In fact, we show that a single $n$-dimensional vector, which is associated with this graph, can be used to generate a complete set of MUBs and demonstrate that this vector can be easily determined. Finally, we discuss some advantages of our formalism regarding the analysis of entanglement structures in MUBs, as well as experimental realizations.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.