Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Auslander-Reiten translations in monomorphism categories (1101.4113v1)

Published 21 Jan 2011 in math.RT

Abstract: We generalize Ringel and Schmidmeier's theory on the Auslander-Reiten translation of the submodule category $\mathcal S_2(A)$ to the monomorphism category $\mathcal S_n(A)$. As in the case of $n=2$, $\mathcal S_n(A)$ has Auslander-Reiten sequences, and the Auslander-Reiten translation $\tau_{\mathcal{S}}$ of $\mathcal S_n(A)$ can be explicitly formulated via $\tau$ of $A$-mod. Furthermore, if $A$ is a selfinjective algebra, we study the periodicity of $\tau_{\mathcal{S}}$ on the objects of $\mathcal S_n(A)$, and of the Serre functor $F_{\mathcal S}$ on the objects of the stable monomorphism category $\underline{\mathcal{S}n(A)}$. In particular, $\tau{\mathcal S}{2m(n+1)}X\cong X$ for $X\in\mathcal{S}n(\A(m, t))$; and $F{\mathcal S}{m(n+1)}X\cong X$ for $X\in\underline{\mathcal{S}_n(\A(m, t))}$, where $\A(m, t), \ m\ge1, \ t\ge2,$ are the selfinjective Nakayama algebras.

Summary

We haven't generated a summary for this paper yet.