Papers
Topics
Authors
Recent
2000 character limit reached

Geometric Algebra: A natural representation of three-space (1101.3619v4)

Published 19 Jan 2011 in physics.hist-ph, math.HO, and physics.pop-ph

Abstract: Historically, there have been many attempts to produce an appropriate mathematical formalism for modeling the nature of physical space, such as Euclid's geometry, Descartes' system of Cartesian coordinates, the Argand plane, Hamilton's quaternions and Gibbs' vector system using the dot and cross products. We illustrate however, that Clifford's geometric algebra (GA) provides the most elegant description of physical space. Supporting this conclusion, we firstly show how geometric algebra subsumes the key elements of the competing formalisms and secondly how it provides an intuitive representation of the basic concepts of points, lines, areas and volumes. We also provide two examples where GA has been found to provide an improved description of two key physical phenomena, electromagnetism and quantum theory, without using tensors or complex vector spaces. This paper also provides pedagogical tutorial-style coverage of the various basic applications of geometric algebra in physics.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.