Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bridging the Gap between Reinforcement Learning and Knowledge Representation: A Logical Off- and On-Policy Framework (1012.1552v1)

Published 7 Dec 2010 in cs.AI, cs.LG, and cs.LO

Abstract: Knowledge Representation is important issue in reinforcement learning. In this paper, we bridge the gap between reinforcement learning and knowledge representation, by providing a rich knowledge representation framework, based on normal logic programs with answer set semantics, that is capable of solving model-free reinforcement learning problems for more complex do-mains and exploits the domain-specific knowledge. We prove the correctness of our approach. We show that the complexity of finding an offline and online policy for a model-free reinforcement learning problem in our approach is NP-complete. Moreover, we show that any model-free reinforcement learning problem in MDP environment can be encoded as a SAT problem. The importance of that is model-free reinforcement

Citations (2)

Summary

We haven't generated a summary for this paper yet.