Papers
Topics
Authors
Recent
2000 character limit reached

Entropy power inequality for a family of discrete random variables

Published 2 Dec 2010 in cs.IT and math.IT | (1012.0412v1)

Abstract: It is known that the Entropy Power Inequality (EPI) always holds if the random variables have density. Not much work has been done to identify discrete distributions for which the inequality holds with the differential entropy replaced by the discrete entropy. Harremo\"{e}s and Vignat showed that it holds for the pair (B(m,p), B(n,p)), m,n \in \mathbb{N}, (where B(n,p) is a Binomial distribution with n trials each with success probability p) for p = 0.5. In this paper, we considerably expand the set of Binomial distributions for which the inequality holds and, in particular, identify n_0(p) such that for all m,n \geq n_0(p), the EPI holds for (B(m,p), B(n,p)). We further show that the EPI holds for the discrete random variables that can be expressed as the sum of n independent identical distributed (IID) discrete random variables for large n.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.