Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Entropy Power Inequality for Discrete Random Variables (1905.03015v1)

Published 8 May 2019 in cs.IT and math.IT

Abstract: Let $\mathsf{N}{\rm d}\left[X\right]=\frac{1}{2\pi {\rm e}}{\rm e}{2\mathsf{H}\left[X\right]}$ denote the entropy power of the discrete random variable $X$ where $\mathsf{H}\left[X\right]$ denotes the discrete entropy of $X$. In this paper, we show that for two independent discrete random variables $X$ and $Y$, the entropy power inequality $\mathsf{N}{\rm d}\left[X\right]+\mathsf{N}{\rm d}\left[Y\right]\leq 2 \mathsf{N}{\rm d}\left[X+Y\right]$ holds and it can be tight. The basic idea behind the proof is to perturb the discrete random variables using suitably designed continuous random variables. Then, the continuous entropy power inequality is applied to the sum of the perturbed random variables and the resulting lower bound is optimized.

Citations (1)

Summary

We haven't generated a summary for this paper yet.