Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Optimum and efficient sampling for variational quantum Monte Carlo (1011.4344v1)

Published 19 Nov 2010 in physics.comp-ph, cond-mat.mtrl-sci, and physics.chem-ph

Abstract: Quantum mechanics for many-body systems may be reduced to the evaluation of integrals in 3N dimensions using Monte-Carlo, providing the Quantum Monte Carlo ab initio methods. Here we limit ourselves to expectation values for trial wavefunctions, that is to Variational quantum Monte Carlo. Almost all previous implementations employ samples distributed as the physical probability density of the trial wavefunction, and assume the Central Limit Theorem to be valid. In this paper we provide an analysis of random error in estimation and optimisation that leads naturally to new sampling strategies with improved computational and statistical properties. A rigorous lower limit to the random error is derived, and an efficient sampling strategy presented that significantly increases computational efficiency. In addition the infinite variance heavy tailed random errors of optimum parameters in conventional methods are replaced with a Normal random error, strengthening the theoretical basis of optimisation. The method is applied to a number of first-row systems, and compared with previously published results.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.