Papers
Topics
Authors
Recent
Search
2000 character limit reached

Associative superalgebras with homogeneous symmetric structures

Published 12 Nov 2010 in math.RA | (1011.3002v1)

Abstract: A homogeneous symmetric structure on an associative superalgebra A is a non-degenerate, supersymmetric, homogeneous (i.e. even or odd) and associative bilinear form on A. In this paper, we show that any associative superalgebra with non null product can not admit simultaneously even-symmetric and odd-symmetric structure. We prove that all simple associative superalgebras admit either even-symmetric or odd-symmetric structure and we give explicitly, in every case, the homogeneous symmetric structures. We introduce some notions of generalized double extensions in order to give inductive descriptions of even-symmetric associative superalgebras and odd-symmetric associative superalgebras. We obtain also an other interesting description of odd-symmetric associative superalgebras whose even parts are semi-simple bimodules without using the notions of double extensions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.