Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Modeling the variability of rankings (1011.2354v1)

Published 10 Nov 2010 in math.ST and stat.TH

Abstract: For better or for worse, rankings of institutions, such as universities, schools and hospitals, play an important role today in conveying information about relative performance. They inform policy decisions and budgets, and are often reported in the media. While overall rankings can vary markedly over relatively short time periods, it is not unusual to find that the ranks of a small number of "highly performing" institutions remain fixed, even when the data on which the rankings are based are extensively revised, and even when a large number of new institutions are added to the competition. In the present paper, we endeavor to model this phenomenon. In particular, we interpret as a random variable the value of the attribute on which the ranking should ideally be based. More precisely, if $p$ items are to be ranked then the true, but unobserved, attributes are taken to be values of $p$ independent and identically distributed variates. However, each attribute value is observed only with noise, and via a sample of size roughly equal to $n$, say. These noisy approximations to the true attributes are the quantities that are actually ranked. We show that, if the distribution of the true attributes is light-tailed (e.g., normal or exponential) then the number of institutions whose ranking is correct, even after recalculation using new data and even after many new institutions are added, is essentially fixed. Formally, $p$ is taken to be of order $nC$ for any fixed $C>0$, and the number of institutions whose ranking is reliable depends very little on $p$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.