A flexible regression model for count data (1011.2077v1)
Abstract: Poisson regression is a popular tool for modeling count data and is applied in a vast array of applications from the social to the physical sciences and beyond. Real data, however, are often over- or under-dispersed and, thus, not conducive to Poisson regression. We propose a regression model based on the Conway--Maxwell-Poisson (COM-Poisson) distribution to address this problem. The COM-Poisson regression generalizes the well-known Poisson and logistic regression models, and is suitable for fitting count data with a wide range of dispersion levels. With a GLM approach that takes advantage of exponential family properties, we discuss model estimation, inference, diagnostics, and interpretation, and present a test for determining the need for a COM-Poisson regression over a standard Poisson regression. We compare the COM-Poisson to several alternatives and illustrate its advantages and usefulness using three data sets with varying dispersion.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.