Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Mean-parametrized Conway-Maxwell-Poisson regression models for dispersed counts (1606.03214v2)

Published 10 Jun 2016 in stat.ME

Abstract: Conway-Maxwell-Poisson (CMP) distributions are flexible generalizations of the Poisson distribution for modelling overdispersed or underdispersed counts. The main hindrance to their wider use in practice seems to be the inability to directly model the mean of counts, making them not compatible with nor comparable to competing count regression models, such as the log-linear Poisson, negative-binomial or generalized Poisson regression models. This note illustrates how CMP distributions can be parametrized via the mean, so that simpler and more easily-interpretable mean-models can be used, such as a log-linear model. Other link functions are also available, of course. In addition to establishing attractive theoretical and asymptotic properties of the proposed model, its good finite-sample performance is exhibited through various examples and a simulation study based on real datasets. Moreover, the MATLAB routine to fit the model to data is demonstrated to be up to an order of magnitude faster than the current software to fit standard CMP models, and over two orders of magnitude faster than the recently proposed hyper-Poisson model.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube