Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 175 tok/s Pro
2000 character limit reached

Coupling optional Pólya trees and the two sample problem (1011.1253v4)

Published 4 Nov 2010 in stat.ME, math.ST, and stat.TH

Abstract: Testing and characterizing the difference between two data samples is of fundamental interest in statistics. Existing methods such as Kolmogorov-Smirnov and Cramer-von-Mises tests do not scale well as the dimensionality increases and provides no easy way to characterize the difference should it exist. In this work, we propose a theoretical framework for inference that addresses these challenges in the form of a prior for Bayesian nonparametric analysis. The new prior is constructed based on a random-partition-and-assignment procedure similar to the one that defines the standard optional P\'olya tree distribution, but has the ability to generate multiple random distributions jointly. These random probability distributions are allowed to "couple", that is to have the same conditional distribution, on subsets of the sample space. We show that this "coupling optional P\'olya tree" prior provides a convenient and effective way for both the testing of two sample difference and the learning of the underlying structure of the difference. In addition, we discuss some practical issues in the computational implementation of this prior and provide several numerical examples to demonstrate its work.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)