Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A New Email Retrieval Ranking Approach (1011.0502v1)

Published 2 Nov 2010 in cs.IR

Abstract: Email Retrieval task has recently taken much attention to help the user retrieve the email(s) related to the submitted query. Up to our knowledge, existing email retrieval ranking approaches sort the retrieved emails based on some heuristic rules, which are either search clues or some predefined user criteria rooted in email fields. Unfortunately, the user usually does not know the effective rule that acquires best ranking related to his query. This paper presents a new email retrieval ranking approach to tackle this problem. It ranks the retrieved emails based on a scoring function that depends on crucial email fields, namely subject, content, and sender. The paper also proposes an architecture to allow every user in a network/group of users to be able, if permissible, to know the most important network senders who are interested in his submitted query words. The experimental evaluation on Enron corpus prove that our approach outperforms known email retrieval ranking approaches.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Basma Hassan (2 papers)
  2. Reem Bahgat (3 papers)
  3. Samir Abdelrahman (8 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.