Papers
Topics
Authors
Recent
Search
2000 character limit reached

Asymptotic Traffic Flow in a Hyperbolic Network: Non-uniform Traffic

Published 16 Oct 2010 in math.GR, cond-mat.stat-mech, cs.NI, math-ph, math.MG, and math.MP | (1010.3305v2)

Abstract: In this work we study the asymptotic traffic flow in Gromov's hyperbolic graphs when the traffic decays exponentially with the distance. We prove that under general conditions, there exists a phase transition between local and global traffic. More specifically, assume that the traffic rate between two nodes $u$ and $v$ is given by $R(u,v)=\beta{-d(u,v)}$ where $d(u,v)$ is the distance between the nodes. Then there exists a constant $\beta_c$ that depends on the geometry of the network such that if $1<\beta<\beta_c$ the traffic is global and there is a small set of highly congested nodes called the core. However, if $\beta>\beta_c$ then the traffic is essentially local and the core is empty which implies very small congestion.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.