Papers
Topics
Authors
Recent
2000 character limit reached

Infinite disorder scaling of random quantum magnets in three and higher dimensions

Published 12 Oct 2010 in cond-mat.dis-nn and quant-ph | (1010.2344v2)

Abstract: Using a very efficient numerical algorithm of the strong disorder renormalization group method we have extended the investigations about the critical behavior of the random transverse-field Ising model in three and four dimensions, as well as for Erd\H os-R\'enyi random graphs, which represent infinite dimensional lattices. In all studied cases an infinite disorder quantum critical point is identified, which ensures that the applied method is asymptotically correct and the calculated critical exponents tend to the exact values for large scales. We have found that the critical exponents are independent of the form of (ferromagnetic) disorder and they vary smoothly with the dimensionality.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.