Quantum-critical properties of the one- and two-dimensional random transverse-field Ising model from large-scale quantum Monte Carlo simulations (2403.05223v2)
Abstract: We study the ferromagnetic transverse-field Ising model with quenched disorder at $T = 0$ in one and two dimensions by means of stochastic series expansion quantum Monte Carlo simulations using a rigorous zero-temperature scheme. Using a sample-replication method and averaged Binder ratios, we determine the critical shift and width exponents $\nu_\mathrm{s}$ and $\nu_\mathrm{w}$ as well as unbiased critical points by finite-size scaling. Further, scaling of the disorder-averaged magnetisation at the critical point is used to determine the order-parameter critical exponent $\beta$ and the critical exponent $\nu_{\mathrm{av}}$ of the average correlation length. The dynamic scaling in the Griffiths phase is investigated by measuring the local susceptibility in the disordered phase and the dynamic exponent $z'$ is extracted. By applying various finite-size scaling protocols, we provide an extensive and comprehensive comparison between the different approaches on equal footing. The emphasis on effective zero-temperature simulations resolves several inconsistencies in existing literature.
- M. Vojta, Quantum phase transitions, Reports on Progress in Physics 66(12), 2069–2110 (2003), 10.1088/0034-4885/66/12/r01.
- S. Sachdev, Quantum Phase Transitions, Cambridge University Press, 2 edn., ISBN 9780511973765, 10.1017/CBO9780511973765 (2011).
- P. Pfeuty and R. J. Elliott, The Ising model with a transverse field. II. Ground state properties, Journal of Physics C: Solid State Physics 4(15), 2370 (1971), 10.1088/0022-3719/4/15/024.
- Two-dimensional periodic frustrated ising models in a transverse field, Phys. Rev. Lett. 84, 4457 (2000), 10.1103/PhysRevLett.84.4457.
- R. Moessner and S. L. Sondhi, Ising models of quantum frustration, Phys. Rev. B 63(22) (2001), 10.1103/PhysRevB.63.224401.
- S. V. Isakov and R. Moessner, Interplay of quantum and thermal fluctuations in a frustrated magnet, Phys. Rev. B 68, 104409 (2003), 10.1103/PhysRevB.68.104409.
- Disorder by disorder and flat bands in the kagome transverse field ising model, Phys. Rev. B 87, 054404 (2013), 10.1103/PhysRevB.87.054404.
- A. Dutta and J. K. Bhattacharjee, Phase transitions in the quantum ising and rotor models with a long-range interaction, Phys. Rev. B 64, 184106 (2001), 10.1103/PhysRevB.64.184106.
- N. Defenu, A. Trombettoni and S. Ruffo, Criticality and phase diagram of quantum long-range o(n𝑛nitalic_n) models, Phys. Rev. B 96, 104432 (2017), 10.1103/PhysRevB.96.104432.
- Quantum-critical properties of the long-range transverse-field Ising model from quantum Monte Carlo simulations, Phys. Rev. B 103, 245135 (2021), 10.1103/PhysRevB.103.245135.
- Scaling at quantum phase transitions above the upper critical dimension, SciPost Phys. 13, 088 (2022), 10.21468/SciPostPhys.13.4.088.
- Long-range interacting quantum systems, Rev. Mod. Phys. 95, 035002 (2023), 10.1103/RevModPhys.95.035002.
- Monte carlo based techniques for quantum magnets with long-range interactions (2024), 2403.00421.
- Quantum phases in circuit qed with a superconducting qubit array, Scientific Reports 4(1), 4083 (2014), 10.1038/srep04083.
- Ising model in a light-induced quantized transverse field, Phys. Rev. Res. 2, 023131 (2020), 10.1103/PhysRevResearch.2.023131.
- Direct observation and control of magnetic monopole defects in an artificial spin-ice material, New Journal of Physics 13(6), 063032 (2011), 10.1088/1367-2630/13/6/063032.
- Reducing disorder in artificial kagome ice, Phys. Rev. Lett. 107, 167201 (2011), 10.1103/PhysRevLett.107.167201.
- Non-fermi-liquid behavior within the ferromagnetic phase in uru2−xrexsi2subscriptnormal-uru2𝑥subscriptnormal-re𝑥subscriptnormal-si2{\mathrm{u}\mathrm{r}\mathrm{u}}_{2-x}{\mathrm{r}\mathrm{e}}_{x}{\mathrm{s}% \mathrm{i}}_{2}roman_uru start_POSTSUBSCRIPT 2 - italic_x end_POSTSUBSCRIPT roman_re start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT roman_si start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, Physical Review Letters 94(4) (2005), 10.1103/physrevlett.94.046401.
- A. Schroeder, S. Ubaid-Kassis and T. Vojta, Signatures of a quantum griffiths phase in a d-metal alloy close to its ferromagnetic quantum critical point, Journal of Physics: Condensed Matter 23(9), 094205 (2011), 10.1088/0953-8984/23/9/094205.
- Dynamics of a bond-disordered s=1𝑠1s=1italic_s = 1 quantum magnet near z=1𝑧1z=1italic_z = 1 criticality, Phys. Rev. B 92, 024429 (2015), 10.1103/PhysRevB.92.024429.
- Metallic quantum ferromagnets, Rev. Mod. Phys. 88, 025006 (2016), 10.1103/RevModPhys.88.025006.
- Order by quenched disorder in the model triangular antiferromagnet RbFe(moo4)2normal-RbFesubscriptsubscriptnormal-moo42\mathrm{RbFe}({\mathrm{moo}}_{4}{)}_{2}roman_RbFe ( roman_moo start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, Phys. Rev. Lett. 119, 047204 (2017), 10.1103/PhysRevLett.119.047204.
- Spin waves near the edge of halogen substitution induced magnetic order in ni(cl1−xbrx)2⋅4SC(NH2)2normal-⋅normal-nisubscriptsubscriptnormal-cl1𝑥subscriptnormal-br𝑥24normal-Snormal-Csubscriptsubscriptnormal-NH22{\mathrm{ni}(\mathrm{cl}}_{1-x}{\mathrm{br}}_{x}{{)}_{2}\cdot{}4{\mathrm{SC}(% \mathrm{NH}}_{2})}_{2}roman_ni ( roman_cl start_POSTSUBSCRIPT 1 - italic_x end_POSTSUBSCRIPT roman_br start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ⋅ 4 roman_S roman_C ( roman_NH start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, Phys. Rev. B 98, 214419 (2018), 10.1103/PhysRevB.98.214419.
- T. Vojta and J. A. Hoyos, Criticality and quenched disorder: Harris criterion versus rare regions, Phys. Rev. Lett. 112, 075702 (2014), 10.1103/PhysRevLett.112.075702.
- R. B. Griffiths, Nonanalytic behavior above the critical point in a random ising ferromagnet, Phys. Rev. Lett. 23, 17 (1969), 10.1103/PhysRevLett.23.17.
- B. M. McCoy, Incompleteness of the critical exponent description for ferromagnetic systems containing random impurities, Phys. Rev. Lett. 23, 383 (1969), 10.1103/PhysRevLett.23.383.
- A. B. Harris, Effect of random defects on the critical behaviour of ising models, Journal of Physics C: Solid State Physics 7(9), 1671 (1974), 10.1088/0022-3719/7/9/009.
- D. S. Fisher, Random transverse field ising spin chains, Phys. Rev. Lett. 69, 534 (1992), 10.1103/PhysRevLett.69.534.
- D. S. Fisher, Critical behavior of random transverse-field ising spin chains, Phys. Rev. B 51, 6411 (1995), 10.1103/PhysRevB.51.6411.
- D. S. Fisher, Phase transitions and singularities in random quantum systems, Physica A: Statistical Mechanics and its Applications 263(1–4), 222–233 (1999), 10.1016/s0378-4371(98)00498-1.
- S.-k. Ma, C. Dasgupta and C.-k. Hu, Random antiferromagnetic chain, Phys. Rev. Lett. 43, 1434 (1979), 10.1103/PhysRevLett.43.1434.
- Infinite-randomness quantum ising critical fixed points, Phys. Rev. B 61, 1160 (2000), 10.1103/PhysRevB.61.1160.
- F. Igloi and C. Monthus, Strong disorder RG approach of random systems, Physics Reports 412(5-6), 277 (2005), 10.1016/j.physrep.2005.02.006.
- I. A. Kovács and F. Iglói, Critical behavior and entanglement of the random transverse-field ising model between one and two dimensions, Phys. Rev. B 80, 214416 (2009), 10.1103/PhysRevB.80.214416.
- I. A. Kovács and F. Iglói, Renormalization group study of the two-dimensional random transverse-field ising model, Phys. Rev. B 82, 054437 (2010), 10.1103/PhysRevB.82.054437.
- C. Monthus and T. Garel, The random transverse field ising model in d = 2: analysis via boundary strong disorder renormalization, Journal of Statistical Mechanics: Theory and Experiment 2012(09), P09016 (2012), 10.1088/1742-5468/2012/09/P09016.
- A. Crisanti and H. Rieger, Random-bond ising chain in a transverse magnetic field: A finite-size scaling analysis, Journal of Statistical Physics 77(5-6), 1087 (1994), 10.1007/bf02183154.
- H. Rieger and N. Kawashima, Application of a continuous time cluster algorithm to the two-dimensional random quantum ising ferromagnet, The European Physical Journal B - Condensed Matter and Complex Systems 9(2), 233 (1999), 10.1007/s100510050761.
- Critical behavior and griffiths-mccoy singularities in the two-dimensional random quantum ising ferromagnet, Phys. Rev. Lett. 81, 5916 (1998), 10.1103/PhysRevLett.81.5916.
- J. Choi and S. K. Baek, Finite-size scaling analysis of the two-dimensional random transverse-field ising ferromagnet, Phys. Rev. B 108, 144204 (2023), 10.1103/PhysRevB.108.144204.
- A. W. Sandvik and J. Kurkijärvi, Quantum monte carlo simulation method for spin systems, Phys. Rev. B 43, 5950 (1991), 10.1103/PhysRevB.43.5950.
- A. W. Sandvik, A generalization of handscombs quantum monte carlo scheme-application to the 1d hubbard model, Journal of Physics A: Mathematical and General 25(13), 3667 (1992), 10.1088/0305-4470/25/13/017.
- A. W. Sandvik, Stochastic series expansion method for quantum ising models with arbitrary interactions, Phys. Rev. E 68, 056701 (2003), 10.1103/PhysRevE.68.056701.
- Computational studies of quantum spin systems, In AIP Conference Proceedings. AIP, 10.1063/1.3518900 (2010).
- P. Pfeuty, The one-dimensional ising model with a transverse field, Annals of Physics 57(1), 79 (1970), https://doi.org/10.1016/0003-4916(70)90270-8.
- Ising model with a transverse field, Phys. Rev. Lett. 25, 443 (1970), 10.1103/PhysRevLett.25.443.
- P. Pfeuty, An exact result for the 1d random ising model in a transverse field, Physics Letters A 72(3), 245 (1979), https://doi.org/10.1016/0375-9601(79)90017-3.
- D. S. Fisher, Random antiferromagnetic quantum spin chains, Phys. Rev. B 50, 3799 (1994), 10.1103/PhysRevB.50.3799.
- F. Iglói and C. Monthus, Strong disorder RG approach – a short review of recent developments, The European Physical Journal B 91(11) (2018), 10.1140/epjb/e2018-90434-8.
- A. P. Young and H. Rieger, Numerical study of the random transverse-field ising spin chain, Phys. Rev. B 53, 8486 (1996), 10.1103/PhysRevB.53.8486.
- Finite-size scaling of pseudocritical point distributions in the random transverse-field ising chain, Phys. Rev. B 76, 064421 (2007), 10.1103/PhysRevB.76.064421.
- Numerical Renormalization Group Study of Random Transverse Ising Models in One and Two Space Dimensions, Progress of Theoretical Physics Supplement 138, 479 (2000), 10.1143/PTPS.138.479, https://academic.oup.com/ptps/article-pdf/doi/10.1143/PTPS.138.479/5313523/138-479.pdf.
- R. Yu, H. Saleur and S. Haas, Entanglement entropy in the two-dimensional random transverse field ising model, Phys. Rev. B 77, 140402 (2008), 10.1103/PhysRevB.77.140402.
- S. Humeniuk, Quantum Monte Carlo studies of strongly correlated systems for quantum simulators, Ph.D. thesis (2018).
- Equation of state calculations by fast computing machines, The Journal of Chemical Physics 21(6), 1087–1092 (1953), 10.1063/1.1699114.
- W. K. Hastings, Monte carlo sampling methods using markov chains and their applications, Biometrika 57(1), 97–109 (1970), 10.1093/biomet/57.1.97.
- A. W. Sandvik, Classical percolation transition in the diluted two-dimensional s=12𝑠12s=\frac{1}{2}italic_s = divide start_ARG 1 end_ARG start_ARG 2 end_ARG heisenberg antiferromagnet, Phys. Rev. B 66, 024418 (2002), 10.1103/PhysRevB.66.024418.
- T. Vojta, Disorder in quantum many-body systems, Annual Review of Condensed Matter Physics 10(1), 233 (2019), 10.1146/annurev-conmatphys-031218-013433.
- I. Antonov and V. Saleev, An economic method of computing lpτ𝜏\tauitalic_τ-sequences, USSR Computational Mathematics and Mathematical Physics 19(1), 252–256 (1979), 10.1016/0041-5553(79)90085-5.
- P. Bratley and B. L. Fox, Algorithm 659: Implementing sobol’s quasirandom sequence generator, ACM Transactions on Mathematical Software 14(1), 88–100 (1988), 10.1145/42288.214372.
- Quasi-monte carlo integration, Journal of Computational Physics 122(2), 218–230 (1995), 10.1006/jcph.1995.1209.
- I. Sobol’, On the distribution of points in a cube and the approximate evaluation of integrals, USSR Computational Mathematics and Mathematical Physics 7(4), 86–112 (1967), 10.1016/0041-5553(67)90144-9.
- K. G. Wilson, Renormalization group and critical phenomena. i. renormalization group and the kadanoff scaling picture, Phys. Rev. B 4, 3174 (1971), 10.1103/PhysRevB.4.3174.
- K. G. Wilson, Renormalization group and critical phenomena. ii. phase-space cell analysis of critical behavior, Phys. Rev. B 4, 3184 (1971), 10.1103/PhysRevB.4.3184.
- A. Hankey and H. E. Stanley, Systematic application of generalized homogeneous functions to static scaling, dynamic scaling, and universality, Phys. Rev. B 6, 3515 (1972), 10.1103/PhysRevB.6.3515.
- E. Brézin, An investigation of finite size scaling, Journal de Physique 43(1), 15–22 (1982), 10.1051/jphys:0198200430101500.
- E. Brézin and J. Zinn-Justin, Finite size effects in phase transitions, Nuclear Physics B 257, 867–893 (1985), 10.1016/0550-3213(85)90379-7.
- K. Binder, Finite size effects on phase transitions, Ferroelectrics 73(1), 43 (1987), 10.1080/00150198708227908.
- T. R. Kirkpatrick and D. Belitz, Exponent relations at quantum phase transitions with applications to metallic quantum ferromagnets, Phys. Rev. B 91, 214407 (2015), 10.1103/PhysRevB.91.214407.
- Scaling theory for finite-size effects in the critical region, Phys. Rev. Lett. 28, 1516 (1972), 10.1103/PhysRevLett.28.1516.
- Griffiths singularities in the random quantum ising antiferromagnet: A tree tensor network renormalization group study, Phys. Rev. B 96, 064427 (2017), 10.1103/PhysRevB.96.064427.
- C. Śliwa, Disorder-averaged binder ratio in site-diluted heisenberg models (2022), 10.48550/ARXIV.2205.00977.
- Finite-size scaling in ising-like systems with quenched random fields: Evidence of hyperscaling violation, Phys. Rev. E 82, 051134 (2010), 10.1103/PhysRevE.82.051134.
- R. Sknepnek, T. Vojta and M. Vojta, Exotic versus conventional scaling and universality in a disordered bilayer quantum heisenberg antiferromagnet, Physical Review Letters 93(9) (2004), 10.1103/physrevlett.93.097201.
- K. S. D. Beach, L. Wang and A. W. Sandvik, Data collapse in the critical region using finite-size scaling with subleading corrections (2005), 10.48550/ARXIV.COND-MAT/0505194.
- Distribution of pseudo-critical temperatures and lack of self-averaging in disordered poland-scheraga models with different loop exponents, Eur. Phys. J. B 48(3), 393 (2005), 10.1140/epjb/e2005-00417-7.
- R. Miyazaki and H. Nishimori, Real-space renormalization-group approach to the random transverse-field ising model in finite dimensions, Phys. Rev. E 87, 032154 (2013), 10.1103/PhysRevE.87.032154.
- T. Vojta, A. Farquhar and J. Mast, Infinite-randomness critical point in the two-dimensional disordered contact process, Phys. Rev. E 79, 011111 (2009), 10.1103/PhysRevE.79.011111.
- S. Wiseman and E. Domany, Lack of self-averaging in critical disordered systems, Phys. Rev. E 52, 3469 (1995), 10.1103/PhysRevE.52.3469.
- Order as an effect of disorder, J. Phys. France 41(11), 1263 (1980), 10.1051/jphys:0198000410110126300.
- D. J. Priour, M. P. Gelfand and S. L. Sondhi, Disorder from disorder in a strongly frustrated transverse-field ising chain, Phys. Rev. B 64, 134424 (2001), 10.1103/PhysRevB.64.134424.
- H. Niederreiter, Quasi-monte carlo methods and pseudo-random numbers, Bulletin of the American Mathematical Society 84(6), 957–1041 (1978), 10.1090/s0002-9904-1978-14532-7.
- P. Jordan and E. Wigner, Über das paulische Äquivalenzverbot, Zeitschrift für Physik 47(9–10), 631–651 (1928), 10.1007/bf01331938.
- T. Matsubara and H. Matsuda, A lattice model of liquid helium, i, Progress of Theoretical Physics 16(6), 569–582 (1956), 10.1143/ptp.16.569.
- G. B. Mbeng, A. Russomanno and G. E. Santoro, The quantum ising chain for beginners (2020), 10.48550/ARXIV.2009.09208.