Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Objective Genetic Programming Projection Pursuit for Exploratory Data Modeling (1010.1888v1)

Published 10 Oct 2010 in cs.LG and cs.NE

Abstract: For classification problems, feature extraction is a crucial process which aims to find a suitable data representation that increases the performance of the machine learning algorithm. According to the curse of dimensionality theorem, the number of samples needed for a classification task increases exponentially as the number of dimensions (variables, features) increases. On the other hand, it is costly to collect, store and process data. Moreover, irrelevant and redundant features might hinder classifier performance. In exploratory analysis settings, high dimensionality prevents the users from exploring the data visually. Feature extraction is a two-step process: feature construction and feature selection. Feature construction creates new features based on the original features and feature selection is the process of selecting the best features as in filter, wrapper and embedded methods. In this work, we focus on feature construction methods that aim to decrease data dimensionality for visualization tasks. Various linear (such as principal components analysis (PCA), multiple discriminants analysis (MDA), exploratory projection pursuit) and non-linear (such as multidimensional scaling (MDS), manifold learning, kernel PCA/LDA, evolutionary constructive induction) techniques have been proposed for dimensionality reduction. Our algorithm is an adaptive feature extraction method which consists of evolutionary constructive induction for feature construction and a hybrid filter/wrapper method for feature selection.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Ilknur Icke (3 papers)
  2. Andrew Rosenberg (32 papers)
Citations (2)