Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Text Categorization using Association Rule and Naive Bayes Classifier (1009.4994v1)

Published 25 Sep 2010 in cs.IR and cs.DB

Abstract: As the amount of online text increases, the demand for text categorization to aid the analysis and management of text is increasing. Text is cheap, but information, in the form of knowing what classes a text belongs to, is expensive. Automatic categorization of text can provide this information at low cost, but the classifiers themselves must be built with expensive human effort, or trained from texts which have themselves been manually classified. Text categorization using Association Rule and Na\"ive Bayes Classifier is proposed here. Instead of using words word relation i.e association rules from these words is used to derive feature set from pre-classified text documents. Naive Bayes Classifier is then used on derived features for final categorization.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (19)

Summary

We haven't generated a summary for this paper yet.