Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A hybrid learning algorithm for text classification (1009.4574v1)

Published 23 Sep 2010 in cs.NE, cs.IR, and cs.LG

Abstract: Text classification is the process of classifying documents into predefined categories based on their content. Existing supervised learning algorithms to automatically classify text need sufficient documents to learn accurately. This paper presents a new algorithm for text classification that requires fewer documents for training. Instead of using words, word relation i.e association rules from these words is used to derive feature set from preclassified text documents. The concept of Naive Bayes classifier is then used on derived features and finally only a single concept of Genetic Algorithm has been added for final classification. Experimental results show that the classifier build this way is more accurate than the existing text classification systems.

Citations (15)

Summary

We haven't generated a summary for this paper yet.